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The Osmotic Migration of Cells in a Solute Gradient
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ABSTRACT The effect of a nonuniform solute concentration on the osmotic transport of water through the boundaries of a
simple model cell is investigated. A system of two ordinary differential equations is derived for the motion of a single cell in
the limit of a fast solute diffusion, and an analytic solution is obtained for one special case. A two-dimensional finite element
model has been developed to simulate the more general case (finite diffusion rates, solute gradient induced by a solidification
front). It is shown that the cell moves to regions of lower solute concentration due to the uneven flux of water through the cell
boundaries. This mechanism has apparently not been discussed previously. The magnitude of this effect is small for red blood
cells, the case in which all of the relevant parameters are known. We show, however, that it increases with cell size and
membrane permeability, so this effect could be important for larger cells. The finite element model presented should also have
other applications in the study of the response of cells to an osmotic stress and for the interaction of cells and solidification
fronts. Such investigations are of major relevance for the optimization of cryopreservation processes.

INTRODUCTION

During the freezing of cells in a cryopreservation processfinite element method with a special front tracking tech-
the advance of a solidification front generally leads to anique to follow the motion of the model cell surface. We
large solute gradient due to the rejection of solute as thatudy the response of one cell both to a fixed solute gradient
water freezes. The purpose of the present paper is to exarand to an advancing solute gradient. Although we account
ine the response of cells to a large solute gradient. The maifor the cell deformation, we ignore any fluid motion result-
result is that a cell in a solute gradient moves to regions ofng from the reaction of the cell to such deformation, as well
lower solute concentration due to the uneven flux of watefas all mechanical aspects of the cell membrane (except the
through the cell boundaries. For a cell with internal solutefact that it is permeable for water and impermeable for the
concentration equal to the average concentration outside trgyute)_ The floating or sinking of cells, as reported by
cell, water is rejected from the cell on the side facing highelpg|iard and Leibo (1993) and Pollard et al. (1993), induced
solute distribution, but is absorbed on the side facing Iowevby changes in buoyant density as water moves across the
concentration. If the solute concentration in the cell is NOtnemprane is also ignored. This assumption does not put
equal to the external average concentration (initial hyperinto question our analysis if the concentration gradient is
tonic or hypotonic environment), the cell initially undergoes supposed to be directed perpendicular to gravity. In a first
a transitional swelling (initial hypotonic environment) or approximation, the horizontal osmotic migration can then

shrinking (initial hypertonic environment) until the cyto- . assumed to be superposed to the vertical movement of
plasm achieves an osmotic pressure intermediate betwe%rihking or floating

Fhi:]()f The solutions on tef:th_er_gufe_ Oft th_e cell. The behavior Computations with several cells in front of an advancing
IS then the same as In the initial 1sotonic case. solidification front show that the osmotic velocity of a row

we |n\_/e_st|gate the_ osmotic response of biological CeIISof cells oriented perpendicular to the concentration gradient
by examining theoretically and numerically the effect of a

. . . F higher than for a single cell. The stability of the row is
solute gradient on a model cell. First, we derive a system 0L amined by perturbing the cells sliahtly. but. because the
two ordinary differential equations for the cell velocity and yp g gnty, '

. : L cell velocities are much smaller than the velocity of the
the rate at which the cell radius changes. This is done for & lidification front. th I ii d tch h
cylindrical and a spherical model cell in a constant solute>2.'Meation front, the cefl Positions do not change much as

gradient and in the limit when the diffusion of solute is th(i:rsolldﬁw_:atlt_)n front agpr%aches.  cell h
much faster than the osmotic velocity of the cell membrane, e motivation 1o study the response of cells to changes

We then solve the governing equations numerically using In solute concentration comes in large part from cryopreser-
vation. During the freezing and thawing of cells, changes in

solute concentration usually lead to osmotic flow of water
and cryoprotectants in and out of the cell, and the resulting
Add - © 10 Dr. Marc 1 Toch o de chat chemical imbalance and the change in thermodynamic prop-
o S e e o Sa2s it g 3 61165 has & major mpact o the success of the cryopreser-
France. Tel.:+33-4-91-106868; Faxi+33-4-91-106969; E-mail: marc@ Vation. The survival of cells depends strongly on the cooling
iusti.univ-mrs.fr. rate, and it is found that intermediate cooling rates result in
© 1999 by the Biophysical Society the highest cell survival but cell survival is low at both high
0006-3495/99/09/1257/11  $2.00 and low cooling rates. At high cooling rates, the cell death
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is believed to be due to the formation of ice in the cells. Theand Batycky et al. (1997), for example, could then be
cell death at low cooling rates has traditionally been attribrelaxed.

uted to the dehydration of cells resulting from osmotic flow The paper is organized as follows. We first give the
of water out of the cells to match the increase in solutenathematical formulation of the problem specifying all
concentration due to solute rejection at a solidification frontunderlying assumptions. The analytical and finite element
(Lovelock, 1953; Mazur, 1965; Mazur et al., 1972). Re-models are described in the subsequent two sections. The
cently, however, several authors have suggested that the celéxt section presents the results and an analysis of the
death at low cooling rates may be due to mechanical interosmotic migration phenomenon, followed by discussion and
actions between the cells and growing ice crystals. Teonclusions.

examine these issues, Ishiguro and Rubinsky (1994) con-

ducted experiments in which the interactions of red blood

cel!s_v_wth_an advancmg solldlflcatlpn frontin a d_lrectlon_al FORMULATION

solidification experiment was studied. For cells in physio-

logical saline, they found that the cells were pushed aheat¥nderlying assumptions

of the solidification front, often resulting in trapping of cells In general, the cell and the ambient fluid are moving and we

between advancing ice fingers during unstable cellular so5, <+ <o1ve for both the fluid motion and the distribution of

lidification. The pushing of cells ahead of a solidification the solute concentration. The solute is advected by the fluid
front has been seen by other investigators (Bronstein et alyq, anq the solute can influence the fluid motion through

1981; Kaber, 1988; Lipp et al., 1994), and a similar phe- o506 in buoyant density as well as surface tension. Sur-
nomena is well known in metallurgy where solidification ¢, .o tension effects could be considerable, but are difficult
fronts can push small particles and bubbles into the NONSQy Jetermine because nothing is known about the key pa-
lidified region. The explanation, in the case of particles, iS.ymeters—the change with concentration of the interfacial

believed to be repulsive van der Waals forces. Large bubgee energy between the solution and the cell surface. The

bles and particles are, however, overtaken by the fronfechanical behavior of the cell (membrane and internal
because the surface forces also result in the lowering of th?tructure) may also modify its motion. However, the me-
solidification temperature and a slow-down in the propagasnanical properties of the membrane and the effect of the
tion of the solidification front behind a particle. Away from g ute on the membrane properties are not well understood
the particle, the front propagates with the undisturbed Ve(see, for example, Evans and Parsegian, 1983). The temper-
locity, and the cell can therefore be left behind and en—ire in the fluid and the cell can also vary.
trapped into the solid region if the front velocity is high  The simplest mathematical description of the response of
enough. This has been analyzed by Sasikumar et al. (1989, ¢e|l to varying solute concentration in the ambient fluid is
who gave formulas for the critical velocity for a given o assume that the fluid motion remains zero and to ignore
particle size. all mechanical properties of the cell membrane. For a single
The volumetric shrinkage of cells due to exosmosis durte|| in a fluid with an initially uniform solute distribution,
ing freezing was first described by Mazur (1963) and thepatycky et al. (1997) showed that fluid velocity is indeed
mathematical modeling of cell response to osmotic stressegero while the cell changes volume due to osmotic flow of
is currently an active research area. Walcerz (1995) sumyater through its boundaries. For nonuniform and time-
marized earlier work and presented a computer program tgependent concentration, this may not always be the case.
simulate the response of a cell to changes in the extern@ecause the interior ultrastructure of the cells makes rela-
solute concentration and temperature using a well mixegively little difference to osmotic in and outflow (provided
two-chamber model. Batycky et al. (1997) accounted for thehat transport through cytoplasm is much faster then through
spatial variation of the solute concentration by solving thethe plasma membrane), the cells can be modeled as vesicles
governing equations analytically in a spherical symmetricfilled with homogeneous medium. We have studied the
geometry. Although these studies have yielded major ininfluence of the organelles on the osmotic response of the
sight into the osmotic transport in and out of cells, they havecell by taking into account in the analytical model a non-
not addressed the effect of variable solute concentratiopsmotically active volume distributed uniformly in the cell.
studied here. In addition to examining the response of a cell To summarize, the underlying assumptions are: the cells
to a solute gradient, the present paper introduces a newre modeled as simple vesicles, the intracellular and extra-
method that appears to be particularly well suited to studyellular medium is a binary solution (with parameters cho-
the motion of biological cells and their response to a changsen to approximate aqueous NaCl solution), the solute is
ing environment. Although we consider only a very simplecompletely nonpermeating, the temperature is constant, the
model here (ignoring all fluid motion and assuming a par-membrane has constant properties, no fluid motion is in-
ticularly simple cell structure), the basic method has beemuced by membrane forces or density variations, and no cell
used for fluid flow problems, and we expect that extendingmotion is induced by gravity. We further assume no aniso-
it to more complex cell problems will not prove to be too tropic forces due to variations in surface free energies with
difficult. The simplifying assumptions of Walcerz (1995) concentration. Additional assumptions specific to the ana-
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lytical model or the finite element model are introduced assolution of the Laplace equation with zero normal gradient
those are presented. at the cell boundary and a constant gradient far from the
cells. The situation is depicted in Fig. 1, where we show a
contour plot of the concentration gradient and a cross sec-
tion through the middle of the cell.

If we assume zero fluid motion and a dilute solute concen-

tration, then the solute concentration, both inside and

outside the cell is governed by a simple diffusion equationSpherical cell

Mathematical formulation

G, For a three-dimensional (3D) cell, the solute concentration
i V-DiVc. (1) in the fluid is given by the solution of Laplace’s equation
with zero normal gradient at the cell boundary (Lamb,
Here, D, is the diffusion coefficient withi = ¢ for the cell  1932),
andi = f for the surrounding fluid. The cell membrane is
impermeable to the solute, but water permeates through the c(0) = ¢ — Gx, — ¥2Gr cos¥, (6)
membrane at a normal velocity,. The membrane must
therefore move with equal and opposite velocify giving ~ where the anglé is defined in Fig. 1y is the radius of the
the boundary conditions for the solute at the cell boundarygell, ¢ is the concentration in the fluid at= 0 andx. is the
location of the cell centroids is the solute gradient far from
D, 9G = —cu,. ) the cell. The normal velocity of the cell membrane is
an therefore dependent on the angle,
Heren defines the normal vector to the membrane directed
toward the external medium. The relative velocity of the
membrane with respect to the fluid is directly proportional
to the difference in the solute concentration on the cell sid(?n
of the membraneg,, and on the fluid sideg;,

u, = —u, = —L(II — II,) = —LRT(¢ — c). 3 av om[m
n f c) T(Cf c) () dt:éu”dS:_LRTj j(CfO—GXC
Here, T is the absolute temperaturg,is the universal gas s

constant and_ is the hydraulic permeability of the mem-

Uy(0) = —LRT(¢? — Gx, — %2Grcosh — c). (7)

The rate of change of the volunweof the cell is found by
tegrating the normal velocity over the cell boundary,

0 Y0

brane.Il; is the osmotic pressure in the mediumin a — %2 Gr cosf— c)rsin 6 do de
homogeneous external medium, Eq. 3 leads to the shrinking
of cells for hypertonic environmenu( < 0) and to the = —47LRTA( — Gx, — C.). (8)

swelling of cells in the hypotonic case,(> 0). . _ '
These equations can be made nondimensional by assurtiere, S is the cell boundary and the first two terms in the
ing a reference size of the cel}, a reference concentration parenthesesc{ — Gx,) are the undisturbed solute concen-

differenceAc, and defining a reference velocity by tration at the cell centroid. For a spherical c®ll= %5 73,
and the total amount of solute inside the cell is constant, so
U = LRTAc. (4)  thatr3c, = r3c2 wherec? is the cell concentration at zero

This results in a nondimensional Peclet number, defined bime andro is the initial radius. This can be rewritten as an
evolution equation for the radius of the cell,

P roU 5)
€= dr ry
D == —LRT(C? — Gx, — c2<§)>. 9)

in addition to the ratio of the diffusivitie®JD; and the '
nondimensional initial cell and fluid solute concentrations.  The velocity of the cell centroid is given by
1
v J X dv
To obtain an elementary understanding of the behavior of a cv
cell in a nonuniform concentration field, we shall start by
examining a simple limiting case of one cell placed in anwhere CV indicates that the integration is over the cell
infinite domain with a uniform concentration gradient volume. Using that,

aligned with thex-axis. Moreover, we assume that diffusion
is much faster than the motion of the cell, so that we may set d
X dv =
dt
Ccv

ANALYTICAL MODEL dx_d
dt " dt

_1d g X dV 0
“vd| VM v @0
CcvV

XU, ds, (12)
S

Pe = 0. The concentration inside the cell is then uniform
and the external concentration gradient is determined by a
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10 T y " where &’ is the undisturbed fluid concentration at= 0
a) 1 divided byGr, andt? is the cell solute concentration at time
5t 1 zero, nondimensionalized in the same way. The initial non-
[ ] dimensional radius is 1, and the initial cell position can be
of taken to be 0. It is perhaps a little counterintuitive that both
_5' the initial cell concentration and the undisturbed concentra-
I ] tion at the initial position must be given, rather than simply
. A : " the initial difference. The fact that the solution depends on
20 -5 10 -5 0 5 10 15 20 the absolute value of the cell concentration can be seen by
b) 3 o considering the special case when the cell concentration is
257 zero. Then it remains zero for all time, whereas any finite
of value will increase as the cell becomes smaller. If the initial
15t Xc cell concentration is zero, the equations become linear and
.| | can be solved to give
|
051 l - 3 3 . 3
! x(t) = c?(l - cosh\g t) + \gsmh \Et, (15)
20 15 10 -5 0 5 10 15 20
FIGURE 1 Schematic.a) Concentration contour plot and)( cross 2., . 3 3
section through the midc??e of the cell in the limit o?very fas)t( diffusion r(t) = \LC? sinh \Et + cosh \E t
(Pe=0).
The cell radius becomes zerotat /7 tanh {(V/%2/&?)
and the cell only moves a short distance. We note that this
andx = x. + r cos6, we find that case, where the initial intracellular concentration is zero, is
biologically unimportant.
dx, 1 X dV
& - v% ATV
S Cylindrical cell
1 x.dV  x.dV Fpr a two-dimensional (2D) cell, the solute concentration is
=V r coséu, ds + Vda VvV given by (Lamb, 1932)
S c(6) = & — Gx, — 2Gr cos#, (16)
_ L\j r” f” ,c0S6 Sin 6 d6 do. (12) and a similar analysis as above yields
o Yo dx,
— = 2LRTGr, a7
Substituting for the normal velocity and carrying out the dt
integration yields dr 2
_ 0 o0
o - e ox- )

a2 LRTGr. (13)
Using the same reference quantities as before, we obtain
We note that the velocity of the centroid depends only orthe following nondimensional equations,

the gradient of the solute concentration and not on the

absolute value. The rate of change of volume of the cell dlc e (18)
does, in contrast, depend on the absolute value, and the cell dt ’
velocity increases with volume.

These equations can be made nondimensional by the dF_ o = ol
reference velocity defined above, the initial cell radius, and e _(Cf X CC<~2))

the fluid concentration gradient times the initial cell radius
(Ac = Gr,). Denoting the nondimensional variables by a The cell velocity is slightly higher than what we found for

tilde F = r/r,, t = LRTGtand& = c/Gr,), we have the 3D cell, but the structure of the equations is the same.
dx. 3.
@2 r (14)  spherical cell with a nonosmotically
active volume V,
i[ _ _(5? % - 60(})) In general, a finite nonosmotically active volunvg, that
dt ‘\ré))’ takes into account organelles and molecules of water that
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are osmotically inactive, exists within the cell (Savitz et al.,
1964). The intracellular concentration is then given by

moles of salt
C.= . . = .
¢ osmotically active volume V —V,

(19)

Because the number of salt moles is constant, the concen-
tration within the cell is

(20)

whereV, is the initial cell volume. Withv, = aV,(0 < a <
1), the cell concentration can be rewritten as
C oVl rl-a)
T V—aVy, Cri-ard’

(21)

The rate of change of the cell radius is then FIGURE 2 Finite element mesh in the cell region.

I -
at = _LRT<C? —Gx— Cg((rS/rg)_a» (22)  \wherei = cori = f. ¢ is the weighting function associated
with the solute, and we have used Eq. 2 for the boundary
The velocity of the cell centroid is the same as found forfluxes. The solute distribution in the fluid and the cell is
a 3D cell without a nonosmotically active volume, becauseound on a stationary mesh, which is locally adapted at each
the velocity does not depend on the cell concentration.  time step in such a way that element boundaries align with
The nondimensional equations for a spherical cell with &he membrane. The mesh adaptation used here differs from
nonosmotically active volume are that which we used in Lock et al. (1998). Instead of cutting
the elements crossed by an interface, here the mesh fitting is

% - §F, (23)  obtained by moving the nodes aligned with the membrane
dat 2 (see Fig. 2). This model differs from an Arbitrary Lagrang-

. ian Eulerian formulation because the nodes located on the
ﬂ _ —(E? — % - 1- 0‘) membrane can change from one time step to the other and
dt ‘- the motion of the mesh is limited to the nodes on the

membrane.

The aim of the mesh adaptation is both to give an accu-
FINITE ELEMENT MODEL rate numerical description of the discontinuity in material
To simulate more general situations, we have developed Broperties between the inside and the outside of a cell and,
2D numerical model based on the finite element methodnost importantly, to allow us to model accurately the water
complemented with a special interface tracking algorithm flux through the membrane by applying the boundary con-
Indeed, the numerical solution of the equations governinglition (Eq. 2) to the elements next to the membrane. To take
the motion of cells in a concentration gradient are maddnto account the solute concentration discontinuity inducing
difficult by the presence of moving cell boundaries, atthis water flux, we replace each node on the interface by two
which there is a discontinuity in the solute concentration. To0des, one for the cell fluid and another for the surrounding
overcome this problem, we use a specially designed finitdluid- Once the mesh has been adapted to the membrane
element method. The method is an extension of the ongosition, the value of the solute at the next time step is
described by Medale and Jaeger (1997) and Lock et afomputed. This computation yields new values of the dis-
(1998). Although the original method was developed forcontinuity in solute concentration at the membrane and thus
problems with fluid flow, here we have used it only for the New values of the osmotic velocity (Eq. 3). The membrane
diffusion of the solute concentration. mesh is then moved Lagrangially. In addition to its accu-
To solve the diffusion equation, we use a three-nodd@cy, this approach allows us easily to take into account the
triangular element with a piece-wise linear approximationMechanical behavior of the membrane (stress—strain analy-
for the solute concentration and an implicit time integrationsis). For that purpose, we would have to complement the
method. The integral form associated with the variationafolute diffusion model presented here with a mechanical
statement of diffusion of solute concentration is one. This will be done in a future work. In the present study,
we have only considered two extreme cases: the membrane
ac can deform freely or cannot deform at all, as assumed in the
W, = J [SCat + D;V(sc) - VCi] dQ + J dcgu, dl,  (24)  analytical analysis. In the first case, the nodes of the mem-
Q s brane mesh are simply moved in the normal direction with
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a magnitude given by the osmotic velocity. In the secondhe high- and low-concentration sides, there is a net flux
case, this step is followed by a repositioning of the nodeshrough the cell, and so, substantial displacement is possi-
uniformly on a circle with the same centroid and the sameble. As a result, the migration velocity is a strong function
area as the cell after the transport step. of the amount of solute initially in the cell, in addition to
depending on the solute gradient in the fluidcdf= 1.5¢,

the cell first swells before migrating and thus reaches a

RESULTS higher velocity. On the contrary, @ = 0.5¢?, the cell first
One cell in a constant solute shrinks, leading to a lower velocity. Similar plots for Egs.
concentration gradient 14 and 23 (not shown) exhibit the same behavior but with

. . different asymptotic cell velocities.
\’\/AVethhavet_soIv?d qus ' 13’.ﬁ18’ a;n_d t23I ””"‘;‘?tr_'ca”g (_usmg What is the nature of the force causing the cell to move?
02 frga |cz)105r t".’I evg) II elr:t_en :|)’n| 1a ﬁon : '?ntfcg__ One way of looking at it is to consider the relative motion
5, 1.0, and 1.5 times;). In Fig. 3, we have plotted (in of solutes and solvent. Solutes diffuse from high concen-

nondimensional variables) the evolution of the cell radlus‘tration to low concentration. Incompressibility requires that,

and the cell centroid, obtained with Eq. 18, versus time forat the same time, an equal volume of solvent moves from

the three different initial cell solute concentrations. ThisIOW solute concentration to high solute concentration. This
figure shows that, if the cell solute concentration is initially flux is more easily understood as solvent moving from. high
equal o th% congentration of the fluid (initial isotonic en- solvent concentration to low solvent concentration. The
vironment, c; = cr). water flows out of t_he _ceII on the I_eft_ solutes inside the cell also diffuse from high (solute) con-
side where the outside concentration is higher than 'ns'dgentration to low, but, due to the semipermeability of the
the cel!{, ?.nd _mt;;_ tﬁe Cﬂ: on Itlh(tah ngf;t where thet Cfrlwl cell membrane, they are constrained to remain inside. The
concentration 1S higher. 1he cell, theretore, moves 10 & q memprane and other ultrastructural components there-
right toward a lower ambient solute concentration. As therore travel with the solutes. The water. in contrast. can

cel Moves, the inflow OT water increases becau_se_ the CorBermeate the membrane, so there is a flux of water through
centration jump on the right becomes larger. This INCreases e cell in a direction opposite to the motion of the cell. The

the size of the cell and reduces the cell solute concentrationorce that acts on the membrane and moves the cell is the
thus equili_brating th_e in- anq the O.Utﬂow' Since_thg VelOCitydifference in osmotic pressure acting on either side of it.
of the cell is proportional to its radius, the velocity increases- . sider a cell in a gradient of concentration decreasing to

slightly as it moves to lower concentrations. If the initial cell the right at a time when the intracellular solution has already

concentration d_iffers from the avc_ar_age concentration in t_heachieved a concentration intermediate between that of the
fluid, the evolution of the cell exhibits two steps: 1) a rapid solution to its right and its left. Water moves in the cyto-

_sr:nnklng_ otr st\;vetllmg oftrt]he cel; ttcn ach||e\:_e a conc_(tarr]]trau%n lasm much more rapidly than it does in through the mem-
n Err;e late t'e wetfanth ose”ot edsci ution on € frf' rane, so the solute concentration inside the cell is nearly
and 2) migration of the cell toward lower concentration i, On the left side of the cell, the osmotic pressure is

regions In the Same manner as in th_e initial |soton_|c Casegreater outside than inside the cell and so exerts a force to
During the first stage, the water flux is outwa_rd or '”V_Vafd the right. On the right side of the cell, the osmotic pressure
over all th_e area, although larger on the_ side of hlgh(_aris greater inside than outside the cell and so also exerts a
cc_)nnentratlon jump. _Thus, the _ceII centroid must rémaif, ce to the right. The total force is therefore to the right (see
within the space initially occupied by the cell. However, Fig. 4). At a molecular and Newtonian level, we may ask
once the cell concentration becomes intermediate betweg}ohy the force on the membrane exerted b'y the solutes,
which move to the right in our example, is greater than that

exerted by the equal volume of solvent. This is simply due

o
)

r — Analytic model (Eq. 18) )
" F.E. model (D=10°) =1

-+ F.E. model (D=10") Ye=e,
- F.E. model (D=780) /"""

=156 A~ v"’r/’/ cleft] . _ =
G ! ~ Cell
ﬁcuc:co' // y"/
A o ~
=05, //;/:/ c —

cff T/ —:>-__>
- -RT(ck"-¢ - ~—J -RT(cie ¢ N
Radius | (ef-co)ny RTEF c.)
/,v' Crigh( 777777 —_ - = | .
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0 0.2 0.4 0.6 0.8 1 X
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FIGURE 4 Schematic. Osmotic pressure acting on a cell placed in a
FIGURE 3 Evolution of the cell radius and the cell centroid for different constant concentration gradiesi*{ andcf9" are the concentration in the
initial cell concentrationse? = 0.5, 1.0, and 1.5 times?, with ¢? = 93.6). fluid on the left and right sides of the cell).
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to the semipermeability. Overall, the water molecules thaR). The membrane mesh consists of 120 two-node linear
pass through the membrane have little change in momentuglements. The computation, which is done in dimensional
and therefore exert relatively little force on the membraneyariables, uses the physical parametegsl(, R, T, ¢ and
whereas the solute molecules all recoil from the membrane?) mentioned above, and we have assumed that the diffu-
and therefore suffer a large momentum change and thusion coefficients in the cell and the ambient fluid are equal.
exert a larger force on membrane. Three different valued) = 10°, 10%, and 780um?/s) have

The importance of osmotic migration can be estimated bypeen considered to study the influence of the Peclet number
considering realistic values for the various parameters in then the osmotic response of the cell. The last diffusivity
expression for the cell velocity. Woller et al. (1985) corresponds to a published value for diffusion of salt in
show a few examples of solute rejection in front of awater (Wollhver et al., 1985). The comparison with the
solidification interface. Their data suggest that gradients ofinalytical model can be found in Fig. 3, where the solid line
the order of 0.01 Mam are not uncommon. The permeabil- shows the analytical results and the markers represent the
ity of erythrocytes is in the range of 5-10n/mirratm, i.e., numerical ones. For clarity, the influence of the Peclet
around 102 m/sPa (Aggarwal et al., 1988; Gilmore et al., number on the results is illustrated in Fig. 3 only for the case
1995), and Keber (1988) finds a mean radius of 4n for & = &. It is clear that, as the Peclet number becomes
this type of cells. We compare, in Table 1, the velocitiessmaller, the results approach the analytical prediction. Be-
obtained with the three different sets of Egs. 14, 18, and 2gondD = 10° um?s no difference can be seen between the
usingL = 10 um/minatm (1.66 102 m/sPa), the freezing analytical and the numerical solutions. In Fig. 5, we show
temperature of wateff(= 273 K), R= 0.08206 atm/MK, the solute concentration in a cross section through the
and a cell radius of lum. We find that the expression for middle of the cell for the lowest and the highest values of
the cell velocity in the zero Peclet number limit gives valuesthe diffusivity (O = 780 um?/s,D = 10° um?/s) at the same
around 0.2um/s. time step. As the cell moves, it is clear that it disturbs the

Table 1 shows that the correction introduced to take intcsolute gradient, whereas the solute concentration behind the
account the nonosmoatically active volume vyields a differ-cell is reduced due to the flow of pure water from the cell,
ence of less than 5%. The 2D model (Eq. 18) overestimatesolute piles up in front of the cell where water moving into
the cell velocity by about 30% in comparison with the 3D the cell leaves the solute behind. A moving cell at a finite
model (Eqg. 14). However the similarity of the results for the Peclet number therefore experiences a smaller jump in
2D and 3D calculations justify restricting a detailed analysisambient solute concentration than does a cell at=P8.
to 2D calculations. Because of the greatly reduced numbeilthough this should slow the cell down, the finite Peclet
of nodes in a 2D calculation, it is therefore possible tonumber also results in a nonuniform distribution inside the
increase the spatial resolution and/or the complexity of theell, and the reduction in the velocity is not as large as if the
system analyzed. inside concentration remained uniform.

To test the finite element model, we have simulated the The computations have been done allowing the mem-
behavior of a cylindrical cell in a constant solute concen-brane to deform freely as well as keeping it circular (node
tration gradient. Our computed response can then be conmepositioning). No difference is observed on the result. This
pared to the 2D analytical solution (Eqg. 18). The computadis as expected because the flux is proportional to6ctus
tional domain is a 2D rectangle that is 16050 um. The  a single cell in a linear concentration gradient. The only
solute concentration is specified along the left and the rightlifference is observed in the structure of the membrane
boundaries, and a zero flux condition is imposed along the
top and the bottom ones. A cylindrical cell (with initial
radiusry = 5 um) is placed at the center of the domain and c
we follow its motion as it moves to the right. The finite 4.8

element mesh consists of 4800 three-node triangles and is ~
refined in the center of the domain where the cell is (see Fig.

D = 780 um?2/s

TABLE 1 Comparison of asymptotic cell velocity obtained 48
with the three versions of the analytical model (2D, 3D, and
3D taking into account the nonosmotically active volume
with a = 0.2). 4.5
2 =05c Q=c 2 =15c D =106 um?/s .
2D 0.268um/s 0.382um/s 0.470um/s 4.4 ™ .
3D (@ = 0) 0.225um/s 0.284um/s 0.325um/s
3D (a = 0.2) 0.237um/s 0.282um/s 0.316um/s 15 10 50 5 10 15 20 25

X (umy)

The results have been obtained with the following dimensional values:

ro=5pum,G = 0.01 Mjum, L = 10 wm/mirratm (1.66x 10 *?> m/sPa), FIGURE 5 Influence of the diffusion coefficient on the concentration
T = 273 K, and for three initial cell concentratiore® = 0.5, 1.0, and 1.5  profile near the cell (cross section through the middle of the cell) at the
timesc?. same time step.
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mesh. As the cell moves to the right, the nodes, which are ym3 um
uniformly distributed in the beginning, move along the 8 Voo, o8
membrane toward the left side of the cell. To continue the 70 " 0.7
computations for a long time, it would thus be necessary to gg 0.6
“Vice =2 pm/s

add new nodes at the front and delete old ones at the back. g, < lice =<1 o Vige = 1 pmis|0.5

40 0.4
One cell in front of an advancing ice front 30 0.3
The solute concentration in front of an advancing solidifi- 201 02
cation front increases as the solute is rejected by the solid- 19 __,,,,..‘--""'Dispmcement 0.1
ified region. The magnitude of the resulting solute concen-  %§“55=s0—=0—406 56~ 667080 90 1 8

tration gradient depends on the front velocity, which is a time (s}
function of the cooling rate. Examples of concentration
profiles in front of an advancing planar ice front can be
found in O’Callaghan et al. (1980) and Wol\er et al.
(1985). Given a front velocity and assuming that the solid
phase rejects all the solute, our finite element model is able
to predict such profiles. Indeed, as the front moves, the
solute concentration in the liquid phase is governed by EqVious section. To have a sufficiently long time to study the
1 with boundary condition Eq. 2, so the solid—liquid inter- Cell response before the solidification front reaches the cell,
face can be simulated in the same way as a cell membranthe left boundary has been placed at 308 from the cell
but with a specified velocity instead of Eq. 3. The solutereégion. At this boundary, the solute concentration is zero
concentration on the other side of the front is set equal tdbecause it is inside the solid phase). The right boundary is
zero. Figure 6, where the evolution of the salt concentratio@!so 100um from the initial position of the cell. On this
ahead of a planar ice front advancing at a velocity pi/s ~ side, we prescribe the concentration values that would exist
is shown, illustrates this capability of the model. Initially, at this point if there was no cell in the domain. This value
the solute concentration in the liquid phase is a constari obtained by a separate computation, like the one pre-
value of 0.145 M. This corresponds to a hypotonic solutionsented on Fig. 6, and evolves as the solidification front
in which the red blood cells take a spherical shape. We ar@dvances. Initially, the concentration in the liquid phase and
now in a position to consider more realistic situations tharinside the cell is equal to 0.145 M. Figure 7 shows clearly
those presented in the previous section and study the o#e influence of the front velocity on the osmotic response.
motic response of one or more cylindrical cells in front of an The increased rate of shrinkage with increasing solidifica-
advancing solidification front. tion velocity corresponds well to published results (Silgare
In Fig. 7, we plot (in dimensional variables) the evolution €t al., 1975). For the parameters simulated here, the cell
of the cell volume and the cell centroid versus time for threespeed induced by the osmotic flow is about 1% of the front
different values of the speed of the solidification front. Thevelocity (0.15um/s for Vice = 10 um/s, 0.02um/s for
conditions here are almost the same as in the previou¥ice = 2 um/s, and 0.0Jum/s for Vi, = 1 pmi/s).
simulations in terms of grid refinement, time step, and top
and bottom boundary conditions. The type of _CPTI! ConSi_d'Many cells in front of an advancing ice front
ered is also the same: a spherical cell with an initial radius
of 5 um and membrane properties as specified in the preAlthough the solidification front will frequently encounter
one cell at a time, after a long time (or if the cell concen-
tration is high) it is possible that several cells pile up in front
of it. Such accumulation is seen, for example, in some of the

FIGURE 7 Evolution of the cell volumes6lid line§ and cell centroid
(dotted line} versus time for three different speedg () of the solidifi-
cation front.

S.ESM) — figures in Ishiguro and Rubinsky (1994). To examine the
Em'd'f@»" direction  t=1200's effect of a solute concentration gradient on several cells, we
05 1 s t=80(t)=s10005‘ have done simulations with a row of identical cells parallel
0.4 t=600 s to the ice front. The conditions of these computations are the
03 t=200‘:4003 \\ same as for the singlg cell case with a front velocity of 1
\\\\ pwm/s. We have studied the influence of the separation

0.2 D B e Eee between the cells by considering increasing initial gap val-

0.1 ues (0.2, 1, and 6 timeag). The evolution of the cell volume

0 | and the cell centroid versus time for the different cases are
-1000  -600 ‘2°°X (ﬁm)QOO 600 1000 compared on Fig. 8. The results obtained for the single cell

case are also shown. The cell velocity becomes larger as the
FIGURE 6 Profile of salt concentration ahead of a planar ice frontdap between the cells decreases. The influence on the cell
advancing at a velocity of Lm/s at different time steps. volume is not as pronounced, although it is reduced a little
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FIGURE 10 Evolution of the cell volume and the cell centroid displace-
ment . — X, (t = 0)] versus time for a row of cells separated by a gap of
0.2ry and initially perturbed by moving horizontally every three cells a
small distance, to the right along with the nonperturbed casg< 0) and

the single cell case.

FIGURE 8 Evolution of the cell volumes and the cell centroids versus
time for a row of cells ahead of an ice front advancing airt/s, along
with the single cell case.

faster when the cells are closer. To explain this phenome- ) o _
non, Fig. 9 shows the solute concentration profile at differ-perturbation. Therefore, it is likely that the cells left behind
ent times in a cross section through the middle of one cellvould eventually catch up and the cells become perfectly
for an initial gap between the cells of 0rg along with the aligned. The motion is, however, very slow and the solidi-
profiles obtained for the single-cell case. The solute confication front reaches the cells before they have time to do so.
centration between the solidification front and the cells Finally, we have done one computation to illustrate the
reaches a higher value for a row of cells due to the blockag#téraction between cells when they are very close. For that
that the cells provide for the diffusion of solute downstream PUrpose, we have considered a group of three cells aligned
Thus, the drop in concentration across the cells is consigwith the solidification front. Initially there is no vertical gap
erably larger and the cells move faster. between the cells, and the middle cell is moved a distagce
To see if osmotic migration can explain, at least in part,l0 the right (i.e., toward the more dilute solution). Unlike
the alignment of cells in front of a solidification front, we OUr previous computations, here, we obtain a nonnegligible
have done additional computation, where a row of celideformation if we let the cell membrane deform freely. This
separated by a gap of Orgis perturbed initially by moving is illustrated in Fig. 11, where we have plotted the contours
every third cell a small distance, to the right. Two initial of the solute concentration in the cell region just before the
perturbations have been examineg:= r, ande, = 2r,. solidification front reaches the cells. The deformation of the
The cell volume and the cell centroid are plotted versus timéniddle cell is largest because of the influence of the two
in Fig. 10, along with the non-perturbed case and the Sing|§urround|ng cells. Although the deformation could have an
cell case. The figure shows that the velocities of the morémpact on the cell itself, or on aspects of the problem not
perturbed cells are lower than for the unperturbed one,
because the blocking is smaller, and that the difference

between the velocities of the cells moved to the right and the R > solidificarion direction
cells left in place increases with the magnitude of the 15k
10F
¢ (M) X \
0.225 - \\
solidification direction ~ § /;?r%[%f gglllls ° n \\\\\\\
T umis - L 3
0.205 o ** = 0.2102M) 3
- =0 r
0.185 3!\ -5 - //////})
T I N
o165 | -0
o :
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FIGURE 9 The solute concentration profile at different time steps in a
cross section through the middle of one cell for an initial gap of.2 FIGURE 11 Concentration contour plot just before the ice front reaches
between the cells and for the single cell case. a group of three cells initially very close together.
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taken into account in this study, it has only a small influenceple, the effect of cryoprotectant agents (permeable or not to
on the evolution of the cell volume and the cell velocity. the membrane), which are generally added to the extra-
cellular medium before cooling, could be taken into ac-
count. However, future developments will focus first on the
extensions of the method to 3D cells and on the introduction
of the temperature as an unknown of the problem. The
We are not aware of any previous discussion of the motiortomputed results could then be compared to experimental
of cells induced by a solute concentration gradient. It is notata. The coupling of the thermal equation with diffusion
mentioned, for example, by Kber (1988) in his review will allow us to study more accurately the interaction of
article nor by Batycky et al. (1997), who suggest nonuni-cells with a solidification front because the influence of the
form solute concentrations as one extension of their inveseells on the solidification process could then be taken into
tigation. Although our results are based on simplifyingaccount. The availability of a sophisticated simulation tool
assumptions about the nature of the cells, they show thatould offer new possibilities for the use of combined mea-
osmotic migration takes place as soon as a solute concesurement/simulations techniques for the determination of
tration gradient occurs, as in the presence of an advancinidpe properties of cell membrane. By studying the osmotic
solidification front. Although the theory and simulations response of a cell as a function of its initial orientation,
predict rather small velocities for the cells considered hereit should be possible to obtain local information for the
the effect could be much more important for cells with membrane and to determine the permeability as a func-
higher permeability and/or size. tion of other parameters such as temperature and solute
In the limit of a Peclet number equal to zero and for aconcentrations.
solute concentration gradient of 0.01 M, the analytical
model leads to cell velocities around Qun/s. For a finite
Peclet number, the velocity is reduced somewhat, but th€unding for this work was provided by the French Ministere de la Defense
order Of magnitude remains the same. The f|n|te elemerﬂ”“’pugh DGA Co.ntract 96.1191A and in part by United States National
computations simulating the osmotic response of a singlgc"?”ce Foundation grant CTC-9503208. We wish to thank Dr. G. Nova-
. g e . ovitch for discussions during the early stages of the project. G. Tryggva-
cell ahead of a moving pIanar solidification front pred'Ct son wishes to thank Institut Universitaire des Sgste Thermiques Indus-
cell velocities of the order of 1-2% of the front speed for wiels for hosting him for one month in April and May of 1998.
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